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Received 6 November 1978, in final form 8 January 1979 

Abstract. The semi-classical correspondence relations are derived from Moshinsky’s 
equations for the exact unitary representation of an arbitrary canonical transformation. 
The correspondence relations are shown to be exact in the case of a linear canonical 
transformation. 

1. Introduction 

Semi-classical mechanics, i.e. classical-limit quantum mechanics, has proved to be a 
source of great insight into the dynamics of a variety of physical phenomena-as, for 
instance, molecular scattering processes (Miller 1974, 1975). Beyond these appli- 
cations semi-classical mechanics is an interesting field of theoretical physics in its own 
right (Berry and Mount 1972). At the very heart of this theory are the general 
correspondence relations as, for instance, derived by Miller (1974): the unitary 
representations of a canonical transformation in the semi-classical limit. The method of 
Miller consists of evaluating certain integral representations of quantum-mechanical 
matrix elements in the limit h + 0, i.e. by applying the method of stationary phase. 

The purpose of the present paper is to show that one can arrive at the same results in 
a quite different way. The starting point of our proof is the work of Moshinsky ef a1 
(Moshinsky and Quesne 1971, Mello and Moshinsky 1975, Kramer er a1 1978). In 
these papers a system of partial differential equations is derived for the unitary matrix 
elements representing, in quantum mechanics, a given canonical transformation of 
classical mechanics. Our work consists of solving these equations in the limit h + 0. We 
show that the semi-classical solution of the Moshinsky equations yields the well known 
correspondence relations. 

In § 2 we describe briefly the derivation of Moshinsky’s equations, extending his 
coordinate representation to momentum and mixed coordinate-momentum represen- 
tations. Planck’s constant h is retained explicitly in our formulae (and not set equal to 
1).  We are well aware of the numerous and profound mathematical problems which are 
contained in the formal arguments of § 2: unique definition of quantum operators, 
existence, spectra and other mathematical properties (Leaf 1969). These questions are 
not the subject of our paper. We essentially adopt Dirac’s point of view (Dirac 1958; 
see also the work of Moshinsky et a1 cited above). 

Section 3 deals with the semi-classical solution of Moshinsky’s equations. For this 
purpose we introduce the amplitude and phase of the unitary matrix elements and 
derive a coupled system of partial differential equations for both quantities. These 
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equations are solved in the limit h+O. The phase turns out to be the generating 
function of the canonical transformation. To be precise, one obtains that type of 
generating function (Goldstein 1959) which corresponds to the chosen basis of the 
unitary representation. The amplitude turns out to be the related van Vleck deter- 
minant (van Vleck 1928). This is Miller's result (Miller 1974). 

In Q 4 we consider a linear canonical transformation. We find the semi-classical 
correspondence relations to be exact in this case. 

2. Unitary representations of a canonical transformation 

For the sake of simplicity we confine ourselves to the consideration of a one-dimen- 
sional system. The position of this system in phase-space is described by a canonically 
conjugate pair of variables (4, p ) .  The corresponding quantum-mechanical operators 
(4, $) satisfy the commutator relation 

[g, 61 = ih. (2.1) 

Alternatively, the phase-space position of the system may also be described by a 
conjugate pair (Q, P )  arising from (4,  p )  by a canonical transformation: 

Q = g(4, P )  P = h(4,  p )  (2.2) 

{Q, P}Q.P = {g, h}q,p 1. (2.3) 

with the Poisson bracket 

The quantum operators (6, B )  corresponding to (Q, P )  are given by 

6 = g(4, B) 

[6, $1 = ih. 

P = h(g, $) 
satisfying 

According to Dirac (1958) we now assume the existence of a unitary transformation U 
such that 

6 = ugu+ B =  U$,+. (2.6) 
With U' = U-' we deduce from equations (2.4) and (2.6) 

( 2 . 7 ~ )  

(2.7b) 

A unitary representation of the canonical transformation (2.2) is defined as a matrix 
representation of the operator U in the basis of the orthonormalised eigenstates of 

414) = 414) AP)=PlP) .  (2.8) 
(4, $1: 

There are four possibilities: 

( 2 . 9 ~ )  

(2.9b) 
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where 

IQ) = U / Q )  IP) = VIP) (2.10) 

are the eigenstates of the transformed operators (8, P) belonging to the eigenvalues 
(Q, PI: 

Q I Q )  = Q/Q) PIP) =PIP). (2.11) 

The symbols I )  and 1 )  distinguish between eigenstates of the old and the new operators 
respectively. 

We now establish partial differential equations for the matrix elements (2.9). For 
example, starting from the operator equations (2.7) one obtains for (41Q) 

(2.126) 

These equations have been given by Moshinsky et a1 (Moshinsky and Quesne 1971, 
Mello and Moshinsky 1975, Kramer eta1 1978). In a quite similar way we obtain such 
equations for the other three matrix elements: 

( 2 . 1 3 ~ )  

(2.13b) 

(2.14b) 

( 2 . 1 5 ~ )  

(2.156) 

As an example we sketch the derivation of equation ( 2 . 1 3 ~ ) .  Making use of the 
identities 

we have from equation ( 2 . 7 ~ )  

With 
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and 

as well as the second of equations (2.10) we finally obtain equation ( 2 . 1 3 ~ ) .  The proof 
of the other equations runs in a quite analogous manner. 

Moshinsky et al discuss exact solutions of the equations (2.12) for a variety of 
canonical transformations, i.e. the functions g and h. Our aim is to derive the solution 
of equations (2.12)-(2.15) in the limit h+O for arbitrary g and h (fulfilling condition 
(2.3)). 

2. The semi-classical limit of a unitary representation 

To calculate the matrix elements (2.9) from equations (2.12)-(2.15) we make the ansatz 

( 3 . 1 ~ )  (qlQ) = al(q, Q) exp(ibl(q, Q)) 

(qlP) = adq,  P )  exp(ibz(q, P)) 

( p l Q )  = a3(p, Q) exp(;bdp, Q)) 

(3.1 b )  

( 3 . 1 ~ )  

(PIP) = d p ,  P )  e x p ( i h ( p ,  PI) (3 . ld)  

with amplitude functions ak and phase functions bk to be determined. Making use of 
the transformation (Dirac 1958) 

h d db 
exp ( a  --b(x) ) ( P , ” , )  g X,T- exp (a -b(x) ) = g  ( i d x d x  x,:-+-(x)) (3.2) 

we obtain from (2.12)-(2.15) the equations 

(3.3a) 

(3.36) 

(3.4a) 

(3.4b) 

(3.5a) 
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(3.66) 

So far no special assumptions have been made. We now turn to the semi-classical limit. 
As a consequence, we assume that the ak and bk do not depend on h. In addition, we 
apply the expansion (van Vleck 1928) 

h d  2 g x,: -+-(x) = g  x,-(x) +- -g’ x,-(x) +2g’ x,-(x) - +O(h ) 

(3.7) 
( d”,” ) 2i[dx ( d“,” ) ( d“,” Id“,] h d db 

( I dx dx 

where g’ means the partial derivative of the function g with respect to its second 
argument. Performing the expansion (3.7) in equations (3.3)-(3.6) and ordering the 
terms according to powers of h we get, as h+0, two equations from each of the 
equations (3.3)-(3.6)+ne from the terms proportional to ho and the other from the 
terms proportional to h’: 

(3.8b) 

(3 .8d)  

(3 .9a)  

(3.96) 

h (4 ,db2(4 ,P) ) -P=0  a4 (3.9c) 

(3 .9d)  

g( -*(p, Q), p )  - Q = o  (3.10a) 
aP 

(3.106) 

( 3 . 1 0 ~ )  

(3.10d) 
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(3 .11~)  

(3.1 1 b) 

( 3 . 1 1 ~ )  

(3.11d) 

Let us at first consider equations (3.8). From ( 3 . 8 ~ )  and ( 3 . 8 ~ )  together with the 
equations (2.2) we get 

( 3 . 1 2 ~ )  

(3.12b) 

From these relations we conclude that the phase function bl(q, Q) is a generating 
function of the F1 type (Goldstein 1959) of the canonical transformation (2.2): 

bi(q, Q)=Fi(q, Q). (3.13) 

Moreover, one easily verifies that equation (3.86) as well as equation (3.8d) are solved 
by van Vleck’s determinant (van Vleck 1928, Schiller 1962): 

Similarly, the equations (3.9)-(3.11) can be solved. We obtain 

(3.14) 

( 3 . 1 5 ~ )  

(3.15 b )  

( 3 . 1 6 ~ )  

(3.16b) 

(3.17a) 

(3.17b) 
ab4 
aP Q = - ( p , P ) .  

Consequently the phase functions b*(q, P), b3(p, Q), b4( p ,  P) are generating functions 
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of the F2, F3, and F4 type (Goldstein 1959) respectively: 

62(4, p )  = FZ(4, p )  

b3(p, Q ) = F 3 ( p 9  Q) 

b4(p, P )  = F4(P, PI. 

Moreover, we get 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

Formulae (3.1) together with the expressions (3.13), (3.14) and (3.18)-(3.23) define the 
semi-classical solution of equations (2.12)-(2.15)-up to a constant factor c. The 
modulus of c, i.e. the normalisation of the matrix elements (2.9), follows from the 
unitarity of U, which implies the conditions: 

[ (4’1Q)(slQ)* dQ = S ( q ’ - q )  ( 3 . 2 4 ~ )  

[ (&“(qlP)* d P =  8 W - q )  (3.246) 

(p’lQ)(pIQ)* dQ = S ( P ’ - P )  (3 .244  

(3.24d) 

These equations are satisfied in the limit A + 0 by the above semi-classical solutions 
provided one chooses a normalisation factor of / c l =  (2rA)-’” in each case (see the 
appendix). So we get the final result 

(3.256) 

( 3 . 2 5 ~ )  

(3.25d) 

These are the famous (Miller 1974) correspondence relations for the unitary represen- 
tation of a canonical transformation in the semi-classical limit. A constant phase factor 
of modulus one remains undetermined in our derivation. In principal, one can fix the 
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phase of the four matrix elements (3.25) in a consistent way if one makes use of the fact 
that the generating functions are connected by Legendre transformations (Goldstein 
1959, Miller 1974). 

4. Linear canonical transformations 

As an example we consider a linear canonical transformation (Moshinsky and Quesne 
1971) 

( 4 . 1 ~ )  

(4.16) 
Q = Aq + Bp 
P = Cq + Dp 

with constants A, B, C, D. The canonicity condition (2.3) demands 

A D - B C Z l  (4.2) 

i.e. the equations (4.1) describe an orthogonal transformation of phase space. For this 
canonical transformation the semi-classical unitary representation of the preceding 
section is exact. Owing to the linearity of the functions g (and h )  the linear expansion 
(3.7) without the term O(h2) is exact, hence equations (3.8)-(3.11) are an exact 
consequence of equations (3.2)-(3.6). Therefore, the correspondence relations (3.25) 
are exact solutions of equations (2.12)-(2.15) in this case. With 

Fi(q, Q)=--(Aq2-2qQ+DQZ) BZO (4.3u) 
1 

2B 

F2(4, P )  = --(Cq2 1 - 2qP -BP2) D Z O  (4.3b) 2 0  

F3(p, Q)=-(Bp2-2pQ-CQ 1 2 ) A f O  (4.3c) 2A 

F4( p ,  P )  = -(Dp2 1 - 2pP +AP2)  C Z O  (4.3d) 2c 

formulae (3.25) yield 

(410) = / 2 ~ h B / - ’ ”  e ~ p ( - ~ ( A q ’ - 2 q Q + D Q  2 1) 

(pia) = J ~ v A A / - ’ / ~  e ~ p ( ~ ( B p ~ - 2 p Q - C Q ~ ) )  (4.4c) 

(4.4u) 

(4.4b) 

2hB 

(4  1 P) = 12 7~ AD I-’’’ exp( - & i (Cs - 2qP - Bf”)) 

2 hA 

( p JP) = 12 7~ h C 1 - ’ ” ex p( (Dp - 2pP + AP2 )) . (4.4d) 
2hC 

These matrix elements are exact unitary representations of the linear canonical 
transformation (4.1). This can easily be verified by insertion into equations (2.12)- 
(2.15) and (3.24). Concerning the phases, we refer the reader to the end of 93. 
Equation ( 4 . 4 ~ )  has been derived and discussed by Moshinsky and Quesne (1971). 
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5. Conclusions 

The correspondence relations are the central result of semi-classical mechanics. We 
therefore find it desirable to establish these important relations from different starting 
points. In this paper we have given a new approach to the correspondence relations. 
The significance of our method is based on the existence of equations (2.12)-(2.15) for 
the exact unitary representation of an arbitrary canonical transformation. The solution 
of these equations in the limit h + 0 may provide new arguments in the discussion on the 
range of validity of semi-classical mechanics. 

Appendix 

The matrix element (4 lQ)  is given semi-classically by 

with the factor c to be determined. Insertion into the unitarity condition (3.24a) leads 
to 

a2F1(q’7 Q, a2F1(qy Q))1’2 exp(i(Fl(q’,  Q ) - F l ( g ,  Q)) dQ = S ( 4 ’ - 4 ) .  (A.2) 
lc12 I ( aq’aQ ag aQ 
In the limit h+O the integrand only contributes to the integral at g ’=g ,  so we 
approximate the exponent linearly: 

With this approximation equation (A.2) becomes 

= /c12 I exp(ip(q’-q))  dp = 8 ( 4 - 4 ) ;  (A.4) 

hence 1cI = ( 2 ~ h ) - ’ ’ ~ .  A similar procedure leads to the same normalisation factor for 
the matrix elements (qjP), ( p l Q )  and (PIP).  The phase of c cannot be deduced from the 
unitarity condition (3.24). 
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